
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 4, AUGUST 2005 1527

Object-Oriented Application Framework
for IEEE 1451.1 Standard

Kang B. Lee, Fellow, IEEE, and Eugene Y. Song

Abstract—The National Institute of Standards and Technology
(NIST), Gaithersburg, MD, smart sensor project focuses on the
development and support of the IEEE 1451 Smart Transducer
Interface Standard for Sensors and Actuators. One of the main
objectives of this project is to provide reference implementations
and applications of the IEEE 1451 family of standards. This paper
describes an object-oriented application framework for the IEEE
1451.1 standard. This framework consists of four layers—the
operating system, middleware and tools, the 1451.1 layer, and the
application layer. The 1451.1 layer focuses on the class hierarchy
of the IEEE 1451.1 standard. It consists of the neutral model and
middleware-based 1451.1 model. The application layer focuses on
the application system design that is the composition or aggre-
gation among the objects of the 1451.1 application systems. The
initial implementation of the object-oriented application frame-
work for IEEE 1451.1 is provided using the Unified Modeling
Language (UML) tools and Adaptive Communication Environ-
ment (ACE) middleware. The wastewater treatment system is used
as an example to initially customize this framework. IEEE 1451.1
application developers can customize their specific applications
with the help of this framework, and the time-to-market for 1451.1
applications can be reduced significantly.

Index Terms—IEEE 1451.1, network capable application
processor (NCAP), object-oriented application, object-oriented
framework, smart transducer, Unified Modeling Language
(UML).

I. INTRODUCTION

THE IEEE Instrumentation and Measurement Society’s
Technical Committee on Sensor Technology has been

working to define IEEE 1451, a family of smart transducer
interface standards [1]. Fig. 1 shows the IEEE 1451 family of
standards. The IEEE 1451.1 Standard for Smart Transducer
Interface for Sensors and Actuators—Network Capable Appli-
cation Processor (NCAP) Information Model, a member of the
family, was established to define a common object model and
interface specification for the components of a networked smart
transducer [2]. Object-oriented development normally includes
four stages: analysis, design, implementation, and testing. An
object-oriented framework is a technique for reusing these
stages in application development within a certain domain or a
certain family of problems [3].

A framework is a reusable, “semicomplete” application that
can be specified to produce customer applications [4], [5]. An
object-oriented framework aims at reusing codes and designs. It
provides an important enabling technology for reusing software

Manuscript received June 15, 2004; revised April 26, 2005.
The authors are with the National Institute of Standards and Tech-

nology, Gaithersburg, MD 20899-8220 USA (e-mail: kang.lee@nist.gov;
ysong@nist.gov).

Digital Object Identifier 10.1109/TIM.2005.851225

components [6]. Compared with traditional software system de-
velopment, object-oriented framework enables higher produc-
tivity and shortens the time-to-market of application develop-
ment. Thus, the object-oriented framework plays a key role in
object-oriented development methodology. Unified Modeling
Language (UML) is a modeling language for supporting object-
oriented modeling and development. It combines the methods of
Booch, Rumbaugh, and Jacobson [7]–[9]. The Object Manage-
ment Group (OMG) accepted UML as its standard for modeling
object-oriented systems in 1997 [9]. Hence, UML is a powerful
tool for object-oriented modeling and design of complex soft-
ware system.

The IEEE 1451.1 object model provides an extensible
framework for the design and implementation of software for
distributed measurement and control systems consisting of
networked NCAP’s hosting smart transducers [2]. The object
model includes a set of hierarchical classes that is a sound
foundation for building an application framework. In order to
reduce 1451.1 application development time, it is important to
have such an object-oriented application framework.

II. OBJECT-ORIENTED FRAMEWORK

An object-oriented application framework is a promising
technology for verifying proven software designs and imple-
mentations in order to reduce the cost and improve the quality
of software [5]. The framework concept can be found in the
Smalltalk programming environment.1 The Smalltalk user in-
terface framework, Model-View-Control (MVC), was perhaps
the first widely used framework [10]. MacApp is a framework
for Macintosh computer applications. It was designed for
supporting the implementation of Macintosh applications that
consist of one or more windows, one or more documents, and
an application object [11]. Although these earlier frameworks
are concerned primarily with implementing a standard user in-
terface, frameworks are by no means limited to user interfaces,
and they can be defined for many other domains as well, such
as operating systems [12] and fire-alarm systems [13]. An ob-
ject-oriented framework can be used for developing distributed
applications [14]. An object-oriented real-time framework can
be used for building a distributed real-time control system in
robotics and automation [15]. A framework-based approach to
real-time development with UML is used for code generation in

1Commercial equipment and software, many of which are either registered or
trademarked, are identified in order to adequately specify certain procedures. In
no case does such identification imply recommendation or endorsement by the
National Institute of Standards and Technology (NIST), Gaithersburg, MD, nor
does it imply that the materials or equipment identified are necessarily the best
available for the purpose.

U.S. Government work not protected by U.S. copyright



1528 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 4, AUGUST 2005

Fig. 1. IEEE 1451 standards family.

Fig. 2. Layer architecture of object-oriented application framework.

the Rhapsody UML tool [16]. Object-oriented framework can
be used for developing distributed manufacturing architectures
[17]. Robert and Johnson describes the evolution of a frame-
work as starting from a white-box framework that is reused
by subclassing and developing it into a black-box framework
that is mostly reused through parameterization [18]. Hayase
proposed a three-view model for developing object-oriented
frameworks. This three-view model includes a domain analysis
view, a layer view, and a mechanism view. The layer view is
used to divide a framework into three layers—an infrastructure
layer, a generic layer, and a domain layer [19]. Bosch describes
a framework consisting of a core framework design and its
associated internal increments (if any) with accompanying
implementation, such as framework internal increments, and
application-specific increments [20]. In summary, object-ori-
ented application frameworks have been widely used in all
kinds of domain applications, including real-time measurement
and control systems.

III. OBJECT-ORIENTED APPLICATION FRAMEWORK

FOR IEEE 1451.1

A. Architecture of the Object-Oriented Framework

The IEEE 1451.1 standard defines a common object model
for the abstract components of networked smart transducers, to-
gether with interface specifications to these components. The
object model provides an extensible framework for the design
and implementation of software for a distributed measurement
and control system. Fig. 2 shows the layer architecture of the ob-
ject-oriented application framework for the IEEE 1451.1 stan-
dard. This framework consists of four layers: operating system
layer, middleware and tools layer, 1451.1 layer, and application
layer.

• The operating system layer focuses on what platform or
operating system the application can be ported to, such as
Windows (NT/2000/XP), Linux, Unix, Windows CE, or
VxWorks.



LEE AND SONG: OBJECT-ORIENTED APPLICATION FRAMEWORK FOR IEEE 1451.1 STANDARD 1529

Fig. 3. Customized implementation of object-oriented framework for IEEE 1451.1 standard.

• The middleware and tools layer focuses on what middle-
ware and tools are used to implement the framework and
domain applications; for example, the Adaptive Com-
munication Environment (ACE), SmartSocket, Common
Object Request Broker Architecture (CORBA) middle-
ware, and all kinds of UML tools.

• The 1451.1 layer focuses on the class hierarchy of 1451.1.
This layer consists of the neutral model and middleware-
based 1451.1 model.
— The neutral model includes operations of all class def-

initions in the IEEE 1451.1 standard. It is based solely
on the 1451.1 standard specifications and is neutral to
any network and middleware.

— The middleware-based 1451.1 model is the im-
plementation of the neutral model using specific
middleware. Each class of middleware-based 1451.1
model should be mapped to the corresponding class
of neutral model and implemented using a middle-
ware. Fig. 2 shows the implementation and mapping
relationship between the neutral model and middle-
ware-based 1451.1 model.

• The application layer focuses on application system de-
sign that is the composition or aggregation among ob-
jects of the application systems. This layer consists of the
objects of application systems, such as a remote moni-
toring system, and a distributed measurement and control
system.

In Fig. 2, the 1451.1 layer is one kind of white-box framework
that relies heavily on static inheritance relationships. It includes
the neutral model and middleware-based 1451.1 model. The
framework user customizes the framework behavior through
subclassing of the framework classes. 1451.1 application devel-
opers can use or extend the classes of the neutral model and then
implement their specific applications. The middleware-based
1451.1 application developers can inherit the classes of the mid-

dleware-based 1451.1 model to implement their specific appli-
cations. The application layer is one kind of black-box frame-
work that focuses on dynamic composition or aggregation rela-
tionship. It is an application system design that is the compo-
sition or aggregation among the objects of the application sys-
tems. Application developers can use composition and aggre-
gation relations to combine the application objects or classes
that are inherited from the classes of middleware-based 1451.1
models to construct and design their specific applications.

IV. INITIAL IMPLEMENTATION OF OBJECT-ORIENTED

APPLICATION FRAMEWORK USING UML

UML provides many meta-models, such as use-case di-
agrams and scenarios, object model diagrams, sequence
diagrams, collaboration diagrams, charts, component diagrams,
and deployment diagrams using an object-oriented approach.
We use the object model diagram and state chart of UML to
represent 1451.1 classes and class hierarchy and state machines
of 1451.1 objects. The object-oriented framework for the
1451.1 standard includes a white-box framework (1451.1 layer)
and a black-box framework (application layer). The object-ori-
ented framework was initially implemented based on the ACE
middleware and Ethernet using UML tools. The wastewater
treatment system was used as an example to customize the
framework. Fig. 3 shows a customized implementation of the
object-oriented application framework for the IEEE 1451.1
standard.

A. IEEE 1451.1 Layer

The 1451.1 standard defines the software architecture via
three models—object model, data model, and communication
model. The object model specifies the software component
types used to design and implement application systems and
provides software building blocks for application systems. The
data model specifies the types and forms of information com-



1530 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 4, AUGUST 2005

Fig. 4. Class hierarchy of IEEE 1451.1 object model.

municated across 1451.1-specified object interfaces for both
local and remote communications. The 1451.1 layer includes
the neutral model and middleware-based 1451.1 model that
rely heavily on static inheritance relationships.

1) IEEE 1451.1 Neutral Model Using UML: The IEEE
1451.1 neutral model is independent of any networks and mid-
dleware. Application developers can extend this neutral model
to implement their specific 1451.1 applications. The neutral
model has been successfully compiled, linked, and established
as a static and dynamic library using UML tools. The neutral
model consists of a data model and object model.

a) Data model of IEEE 1451.1 neutral model: The 1451.1
data types can be classified into primitive data type and derived
data type (or structured data type) [2]. The primitive data types
include Boolean, integers (8, 16, 32, and 64 bits and unsigned),
floats (32 and 64 bits), and Octet (an 8-bit unsigned char). The
primitive data types can be mapped into C++ data types; for
example, Integers64 in 1451.1 can be mapped into _int64 in
C++. The structured data types include data types such as arrays,
structs, unions, and enumerations. All kinds of structured data
types can be defined as classes except for enumerations. The
structured data types can be modeled based on an object-ori-
ented approach using UML tools [21].

b) Object model of IEEE 1451.1 neutral model: The ob-
ject model specifies the software component types used to de-
sign and implement application systems. In UML, a class dia-
gram specifies the system structure by identifying object classes
and their multiplicities, roles, and object relationships. Objects
can be represented as classes in UML, the class schema of the
standard. The network visible and local operations of the ob-
jects can be described as the public operations and protected
operations of the class, respectively. All reactive objects have
their own state chart. Fig. 4 shows the class hierarchy of the ob-
ject model. Detail information is included in [21]. The neutral
model is neutral to all networks and middleware. Application
developers can extend this neutral model and then implement
their specific 1451.1 applications. The neutral model will result

in higher reuse of software, so with the help of the neutral model,
developers can shorten the development time of 1451.1 applica-
tions.

2) ACE-Based IEEE 1451.1 Model: ACE is an open-source,
object-oriented framework that implements many core patterns
for concurrent communication software [22]. ACE can be used
as middleware to implement object-orient frameworks. The neu-
tral model can be mapped into the ACE-based 1451.1 model
using ACE middleware in order to implement the neutral model.
The 1451.1 layer in Fig. 3 shows the mapping between the
neutral model and ACE-based 1451.1 model. The mapping in-
cludes data model mapping and object model mapping. In this
example, the ACE-based 1451.1 model is specific to the Eth-
ernet and ACE middleware and uses ACE objects and design
patterns to implement a neutral model (following the arrow).
The ACE-based 1451.1 model has been successfully compiled,
linked, and established as a static and dynamic library using
UML tools.

a) Data model of ACE-based IEEE 1451.1 model: The
ACE-based 1451.1 data model can implement the 1451.1 data
model using ACE middleware based on the Ethernet. Each
data type class of ACE-based data model should map to the
correspondent data type of 1451.1 data model and implement it
using ACE middleware. The primitive data types can be mapped
to the basic data types of the ACE middleware. For example,
Float64 in 1451.1 can be mapped to ACE_CDR::Double. The
purpose of using ACE primitive data types is to easily marshal
and demarshal data transmitted through a network by means
of the ACE_CDR class. All kinds of structured data types can
be defined as classes except for enumerations based on the
data types of ACE middleware. For example, ACE_ObjectDis-
patchAddress class can be mapped to ObjectDispatchAddress
class in 1451.1. An object’s ObjectDispatchAddress is indepen-
dent on both the network used and the 1451.1 implementation.

If the network is Ethernet, then an object’s ObjectDispatch-
Address could be a triple consisting of: the IP address, a fixed
and standard port number, and the object’s object tag. Based on



LEE AND SONG: OBJECT-ORIENTED APPLICATION FRAMEWORK FOR IEEE 1451.1 STANDARD 1531

Fig. 5. Dynamic aggregation relationships among IEEE 1451.1 classes.

ACE_INET_Addr class, the ACE_ObjectDispatch-Address can
be defined as consisting of iPAddress (ACE_Cstring), portNo
(u_short), and objectTag (ACE_ObjectTag).

b) ACE-based IEEE 1451.1 objects: The ACE-based
IEEE1451.1 object model is used to implement the ob-
ject model by means of ACE middleware. A reactor pattern
(ACE_Reactor) can be used to do efficient event demultiplexing
and dispatching. Active object pattern and acceptor-connector
patterns can be used to do client–server communication.
ACE_Svc_Handler of ACE is an active class based not only
on the ACE_Event_Handler, but also on the ACE_Task that
provides the ability to create separate threads and uses message
queues to store an incoming data message and to process
them concurrently. The ACE-based 1451.1 objects use ACE
objects and design patterns to implement corresponding 1451.1
objects. Each class of the ACE-based object model should be
mapped or extended from the corresponding class of object
model and implemented based on ACE middleware. Com-
pared with the neutral model, all ACE-based 1451 objects
are prefixed with ACE_. In the standard, IEEE1451_Entity
class is the base class for all network and block services in the
IEEE 1451.1 standard. All subclasses of ACE_Entity class can
be used as active objects, so these subclasses should inherit
the ACE_Svc_Hanlder class of ACE in order to implement
client–server and publisher–subscriber communication. The
NCAP block is a housekeeper for network communication.
ACE_NCAPBlock uses ACE_PublisherPort to publish publi-
cations and ACE_SubscriberPort to subscribe to publications.
It can use ACE_ClientPort to do client–server communication.
ACE_NCAPBlock uses Acceptor–Connector design pattern
of ACE to do client–server and publisher–subscriber commu-
nication. ACE_ClientPort provides the client-side application
interface to client–server communications using operation Exe-
cute(). Any subclass of ACE_Entiry can be used as server-side
application interface to client–server communication using
operation Perform(). The transducer block provides the soft-
ware connection to the transducer device. The function block
provides the transducer application algorithm. The publisher
and subscriber port provide publishing and subscribing end
points. The mutex service provides application synchroniza-
tion. Parameters contain the network accessible variables that
hold and update the data.

Fig. 6. Wastewater treatment system.

Fig. 7. Components of a wastewater treatment system.

B. Application Layer

An application layer focuses on an application system design
that is the composition or aggregation among objects of the ap-
plication systems. It consists of the objects of the application
systems, such as a remote monitoring system and a measure-
ment and control system. Application developers can use ag-
gregation and composition relations to combine the application
classes that inherit from the classes of middleware-based 1451.1
models to construct and design their specific applications.



1532 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 4, AUGUST 2005

Fig. 8. Object model of level control module.

There are two levels of dynamic ownership relationships
among 1451.1 classes shown in Fig. 5 [2]. The first level
is the ownership among blocks. The NCAP Block object is
a top-level block in the process space. It is the only object
type that owns itself (local NCAP block object) and is not
owned by any other objects. The NCAP block can own other
blocks, such as function block, base transducer block, and
local NCAP block. The second level is the ownership between
block object and other objects. The ownership relationships
of the Block Objects to the Component Objects and Service
Objects are shown in the Fig. 5. For example, one NCAP Block
can own zero or more component objects and zero or more
service objects, respectively. These aggregation relationships
in this UML model are very useful in constructing application
systems. An NCAP Block object is a logical container of
blocks, services, and components. We use the block owner-
ship and inheritance relationships to construct subsystems or
modules of a wastewater treatment system, which is shown in
Fig. 6.

The wastewater treatment system was taken as an example
for customizing the object-oriented framework. The purpose of
the wastewater processing system is to monitor the pH value
of industrial wastewater and raise it to a predetermined level
by mixing in a sodium hydroxide (NaOH) solution before dis-
charging the water into the city sewer. The wastewater treatment

system can be divided into three modules: pH control, level con-
trol, and operation station module.

Fig. 7 shows the components of the wastewater treatment
system. The pH control module is to monitor the pH of indus-
trial wastewater, control the pump speed, and control mixer. The
level control adjusts the water level. The operator station dis-
plays the pH sensor and level sensor measurement values, logs
the data in a database, provides alarms, and manages system
control mode (automatic or manual). Each module of waste-
water treatment system can be implemented with one NCAP.
Each module of the wastewater treatment system can be mod-
eled using the object-oriented approach by means of UML tools
and can be customized based on the framework.

Fig. 8 shows the object model of the level control module
that consists of one LevelControlNCAP block that owns one
LevelFunctionBlock and one LevelDot2TransducerBlock. Lev-
elDot2TransducerBlock, one subclass of ACE_Dot2-Transduc-
erBlock, owns one LevelSensorParameter and one ValveCon-
trolParameter. These parameter objects provide an application
interface to the level sensor and valve control, respectively.
The LevelFunctionBlock, one subclass of ACE_Function-
Block, owns one LevelPID, one LevelAlarm-Parameter, one
LevelControlParameter, one LevelHMIClient-Port, and one
LevelMeasurementPublishPort. The LevelPID in the Lev-
elFunctionBlock notifies the operator station if the level



LEE AND SONG: OBJECT-ORIENTED APPLICATION FRAMEWORK FOR IEEE 1451.1 STANDARD 1533

of the wastewater exceeds a given set point. It does so by
remotely invoking via client–server communication the Leve-
lAlarmEvent() on the operator station’s HMIFunction-Block.
The LevelHMIClientPort and LevelMeasurement-PublishPort
can be used to communicate with the PHControl module and
operator station module. Each class in the level control module
can inherit from the corresponding classes in the ACE-based
1451.1 model.

V. CONCLUSION

This paper describes an object-oriented application frame-
work for the IEEE 1451.1 standard. The neutral model and
Adaptive Communication Environment (ACE)-based 1451.1
model developed have been successfully compiled, linked,
and established as a static and dynamic library using Unified
Modeling Language (UML) tools. The C++ source code of
the neutral model is available in the SourceForge website
http://open1451.sourceforge.net/. IEEE 1451.1 application
developers can extend this neutral model and implement their
specific 1451.1 applications using the C++ source code. The
customized implementation of the object-oriented application
framework for the IEEE 1451.1 standard is provided using
UML tools and ACE middleware. The ACE-based 1451.1 ap-
plication developers can inherit the ACE-based 1451.1 model
to implement their specific IEEE 1451.1 applications. The
wastewater treatment system has been used as an example to
successfully customize this framework. Application developers
can use this framework to customize their specific applications,
thus reducing the time-to-market for developing 1451.1-based
applications.

The authors’ future work will add further improvements to the
framework and to migrate IEEE 1451.1-based applications into
various physical NCAPs in order to verify NCAP functionality.

REFERENCES

[1] K. Lee, “IEEE 1451: A standard in support of smart transducer net-
working,” in Proc. Instrumentation Measurement Conf. (IMTC) 2000,
vol. 2, Baltimore, MD, May 1–4, 2000, pp. 525–528.

[2] A Smart Transducer Interface for Sensors and Actuators-Network Ca-
pable Application Processor (NCAP) Information Model, IEEE Stan-
dard 1451.1, Jun. 1999.

[3] T. Ohlsson. Development of object-oriented frameworks. [On-
line]. Available: http://hem.fyristorg.com/tobias.ohlsson/develop-
ment_pt97toh.pdf

[4] R. E. Johnson and B. Foote, “Designing reusable classes,” J. Object-
Oriented Programming, pp. 22–35, Jun./Jul. 1988.

[5] M. E. Fayad and D. C. Schmidt, “Object-oriented alication frameworks,”
Commun. ACM, vol. 40, no. 10, pp. 32–38, Oct. 1997.

[6] S. Srinivasan, “Design patterns in object-oriented frameworks,” IEEE
Computer, vol. 32, no. 2, pp. 24–32, Feb. 1999.

[7] M. Fowler and K. Scott, UML Distilled—A Brief Guide to the Standard
Object Modeling Language, 2nd ed. Reading, MA: Addison-Wesley,
1999.

[8] B. Douglass, Real-Time UML Model: Developing Efficient Objects for
Embedded Systems, 2nd ed. Reading, MA: Addison-Wesley, 1999.

[9] http://www.omg.org/uml/ [Online]
[10] A. Goldberg, Smalltalk-80: The Interactive Programming Environment,

2nd ed. Reading, MA: Addison-Wesley, 1984.
[11] K. J. Goldberg, Object-Oriented Programming for Macintosh. New

York: Hayden, 1986.

[12] V. F. Russo, “An object-oriented operating system,” Ph.D. dissertation,
Univ. of Illinios at Urbana–Champaign, Oct. 1990.

[13] P. Molin and L. Ohlsson, “Points and deviations—A pattern language
for fire alarm system,” presented at the 3rd Int. Conf. Pattern Language
Programming, Monticello, IL, Sep. 1996, Paper 6.

[14] D. C. Schmidt. ASX: An object-oriented framework for developing dis-
tributed alications. presented at 6th USENIX C++ Conf. [Online]. Avail-
able: http://www.cs.wustl.edu/~schmidt/PDF/C++-USENIX-94.pdf

[15] A. Traub and R. D. Schraft, “Object-oriented realtime framework for
distributed control systems,” in Proc. IEEE Int. Conf. Robotics Automa-
tion, vol. 4, Detroit, MI, May 10–15, 1999, pp. 3115–3121.

[16] B. Kadar, L. Monostori, and E. Szelke, “Object-oriented framework for
developing distributed manufacturing architectures,” J. Intell. Manuf.,
vol. 9, no. 2, pp. 173–179, Apr. 1998.

[17] M. Fayad, M. E. Fayad, and D. C. Schmidt, Building Application Frame-
works: Object-Oriented Foundations of Framework Design. New
York: Wiley, Sep. 1999.

[18] D. Robert and R. Johnson, “Evolving frameworks: A pattern language
for developing object-oriented frameworks,” presented at the 3rd Conf.
Pattern Language Programming, Montecillio, IL, 1996.

[19] T. Hayase, N. Ikeda, and K. Matsumoto, A Three-View Model for De-
veloping Object-Oriented Frameworks. Piscataway, NJ: IEEE Press,
2001.

[20] J. Bosch, P. Molin, P. Mattsson, and M. Bengtsson, Object-Oriented
Frameworks—Problems & Experiences, Object-Oriented Application
Frameworks, M. Fayad, D. Schmidt, and R. Johnson, Eds. New York:
Wiley, 1999.

[21] K. Lee and E. Y. Song, “UML model for the IEEE 1451.1 standard,”
presented at the IEEE Instrumentation Measurement Technology Conf.
2003, Vail, CO, May 2003.

[22] [Online]. Available: http://www.cs.wustl.edu/~schmidt/ACE-
overview.html

Kang B. Lee (M’73–SM’00–F’03) received the
B.S.E.E. degree from The Johns Hopkins University,
Baltimore, MD, in 1971 and the M.S.E.E. degree
from the University of Maryland, College Park, in
1981.

He is the Leader of Sensor Development and Ap-
plication Group of the Manufacturing Engineering
Laboratory at the National Institute of Standards
and Technology (NIST), Gaithersburg, MD. Since
joining NIST, formerly NBS, in 1973, he has worked
in the fields of electronic instrumentation design,

sensor-based closed-loop machining, robotic manufacturing automation, smart
sensor networking, and Internet-based distributed measurement and control
systems.

Mr. Lee serves as the Chair of the Instrumentation and Measurement (I&M)
Society’s Technical Committee on Sensor Technology TC9 that defines the
IEEE 1451 standards. He also serves as the I&M Society Delegate to the
Sensors Council.

Eugene Y. Song received the Ph.D. degree in manu-
facturing engineering from Tsinghua University, Bei-
jing, China, in 1998.

He was formerly a Professor at Hebei Institute
of Technology, TangShan, China. He is currently a
Guest Researcher in the Manufacturing Metrology
Division of the Manufacturing Engineering Lab-
oratory at the National Institute of Standards and
Technology (NIST), Gaithersburg, MD. He has
published 50 journal and conference papers. His
current research interests include networked smart

sensor interface, objected-oriented modeling based on UML, reference imple-
mentation of IEEE 1451 standards, and distributed measurement and control
systems.


	toc
	Object-Oriented Application Framework for IEEE 1451.1 Standard
	Kang B. Lee, Fellow, IEEE, and Eugene Y. Song
	I. I NTRODUCTION
	II. O BJECT -O RIENTED F RAMEWORK

	Fig.€1. IEEE 1451 standards family.
	Fig.€2. Layer architecture of object-oriented application framew
	III. O BJECT -O RIENTED A PPLICATION F RAMEWORK FOR IEEE 1451.1
	A. Architecture of the Object-Oriented Framework


	Fig.€3. Customized implementation of object-oriented framework f
	IV. I NITIAL I MPLEMENTATION OF O BJECT -O RIENTED A PPLICATION 
	A. IEEE 1451.1 Layer


	Fig.€4. Class hierarchy of IEEE 1451.1 object model.
	1) IEEE 1451.1 Neutral Model Using UML: The IEEE 1451.1 neutral 
	a) Data model of IEEE 1451.1 neutral model: The 1451.1 data type
	b) Object model of IEEE 1451.1 neutral model: The object model s

	2) ACE-Based IEEE 1451.1 Model: ACE is an open-source, object-or
	a) Data model of ACE-based IEEE 1451.1 model: The ACE-based 1451


	Fig.€5. Dynamic aggregation relationships among IEEE 1451.1 clas
	b) ACE-based IEEE 1451.1 objects: The ACE-based IEEE1451.1 objec

	Fig.€6. Wastewater treatment system.
	Fig.€7. Components of a wastewater treatment system.
	B. Application Layer
	Fig.€8. Object model of level control module.

	V. C ONCLUSION
	K. Lee, IEEE 1451: A standard in support of smart transducer net

	A Smart Transducer Interface for Sensors and Actuators-Network C
	T. Ohlsson . Development of object-oriented frameworks . [Online
	R. E. Johnson and B. Foote, Designing reusable classes, J. Objec
	M. E. Fayad and D. C. Schmidt, Object-oriented alication framewo
	S. Srinivasan, Design patterns in object-oriented frameworks, IE
	M. Fowler and K. Scott, UML Distilled A Brief Guide to the Stand
	B. Douglass, Real-Time UML Model: Developing Efficient Objects f
	A. Goldberg, Smalltalk-80: The Interactive Programming Environme
	K. J. Goldberg, Object-Oriented Programming for Macintosh . New 
	V. F. Russo, An object-oriented operating system, Ph.D. disserta
	P. Molin and L. Ohlsson, Points and deviations A pattern languag
	D. C. Schmidt . ASX: An object-oriented framework for developing
	A. Traub and R. D. Schraft, Object-oriented realtime framework f
	B. Kadar, L. Monostori, and E. Szelke, Object-oriented framework
	M. Fayad, M. E. Fayad, and D. C. Schmidt, Building Application F
	D. Robert and R. Johnson, Evolving frameworks: A pattern languag
	T. Hayase, N. Ikeda, and K. Matsumoto, A Three-View Model for De
	J. Bosch, P. Molin, P. Mattsson, and M. Bengtsson, Object-Orient
	K. Lee and E. Y. Song, UML model for the IEEE 1451.1 standard, p



